Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Experimental Neurobiology ; : 54-64, 2022.
Article in English | WPRIM | ID: wpr-924975

ABSTRACT

Spinal cord injury is a destructive disease characterized by motor/sensory dysfunction and severe inflammation. Alendronate is an anti-inflammatory molecule and may therefore be of benefit in the treatment of the inflammation associated with spinal cord injury. This study aimed to evaluate whether alendronate attenuates motor/sensory dysfunction and the inflammatory response in a thoracic spinal cord clip injury model. Alendronate was intraperitoneally administered at 1 mg/kg/day or 5 mg/kg/day from day (D) 0 to 28 post-injury (PI). The histopathological evaluation showed an alleviation of the inflammatory response, including the infiltration of inflammatory cells, and a decrease in gliosis. Alendronate also led to reductions in the levels of inflammation-related molecules, including mitogen-activated protein kinase, p53, pro-inflammatory cytokines, and pro-inflammatory mediators. Neuro-behavioral assessments, including the Basso, Beattie, and Bresnahan scale for locomotor function, the von Frey filament test, the hot plate test, and the cold stimulation test for sensory function, and the horizontal ladder test for sensorimotor function improved significantly in the alendronate-treated group at D28PI. Taken together, these results suggest that alendronate treatment can inhibit the inflammatory response in spinal cord injury thus improving functional responses.

2.
Experimental Neurobiology ; : 308-317, 2021.
Article in English | WPRIM | ID: wpr-898355

ABSTRACT

Experimental autoimmune uveitis (EAU) is an animal model of human autoimmune uveitis that is characterized by the infiltration of autoimmune T cells with concurrent increases in pro-inflammatory cytokines and reactive oxygen species. This study aimed to assess whether betaine regulates the progression of EAU in Lewis rats. EAU was induced via immunization with the interphotoreceptor retinoid-binding protein (IRBP) and oral administration of either a vehicle or betaine (100 mg/kg) for 9 consecutive days. Spleens, blood, and retinas were sampled from the experimental rats at the time of sacrifice and used for the T cell proliferation assay, serological analysis, real-time polymerase chain reaction, and immunohistochemistry. The T cell proliferation assay revealed that betaine had little effect on the proliferation of splenic T cells against the IRBP antigen in an in vitro assay on day 9 post-immunization. The serological analysis showed that the level of serum superoxide dismutase increased in the betainetreated group compared with that in the vehicle-treated group. The anti-inflammatory effect of betaine was confirmed by the downregulation of pro-inflammation-related molecules, including vascular cell adhesion molecule 1 and interleukin-1β in the retinas of rats with EAU. The histopathological findings agreed with those of ionized calcium-binding adaptor molecule 1 immunohistochemistry, further verifying that inflammation in the retina and ciliary bodies was significantly suppressed in the betaine-treated group compared with the vehicle-treated group. Results of the present study suggest that betaine is involved in mitigating EAU through anti-oxidation and anti-inflammatory activities.

3.
Experimental Neurobiology ; : 308-317, 2021.
Article in English | WPRIM | ID: wpr-890651

ABSTRACT

Experimental autoimmune uveitis (EAU) is an animal model of human autoimmune uveitis that is characterized by the infiltration of autoimmune T cells with concurrent increases in pro-inflammatory cytokines and reactive oxygen species. This study aimed to assess whether betaine regulates the progression of EAU in Lewis rats. EAU was induced via immunization with the interphotoreceptor retinoid-binding protein (IRBP) and oral administration of either a vehicle or betaine (100 mg/kg) for 9 consecutive days. Spleens, blood, and retinas were sampled from the experimental rats at the time of sacrifice and used for the T cell proliferation assay, serological analysis, real-time polymerase chain reaction, and immunohistochemistry. The T cell proliferation assay revealed that betaine had little effect on the proliferation of splenic T cells against the IRBP antigen in an in vitro assay on day 9 post-immunization. The serological analysis showed that the level of serum superoxide dismutase increased in the betainetreated group compared with that in the vehicle-treated group. The anti-inflammatory effect of betaine was confirmed by the downregulation of pro-inflammation-related molecules, including vascular cell adhesion molecule 1 and interleukin-1β in the retinas of rats with EAU. The histopathological findings agreed with those of ionized calcium-binding adaptor molecule 1 immunohistochemistry, further verifying that inflammation in the retina and ciliary bodies was significantly suppressed in the betaine-treated group compared with the vehicle-treated group. Results of the present study suggest that betaine is involved in mitigating EAU through anti-oxidation and anti-inflammatory activities.

4.
Experimental Neurobiology ; : 74-84, 2019.
Article in English | WPRIM | ID: wpr-739529

ABSTRACT

Olfactory dysfunction occurs in multiple sclerosis in humans, as well as in an animal model of experimental autoimmune encephalomyelitis (EAE). The aim of this study was to analyze differentially expressed genes (DEGs) in olfactory bulb of EAE-affected mice by next generation sequencing, with a particular focus on changes in olfaction-related signals. EAE was induced in C57BL/6 mice following immunization with myelin oligodendrocyte glycoprotein and adjuvant. Inflammatory lesions were identified in the olfactory bulbs as well as in the spinal cord of immunized mice. Analysis of DEGs in the olfactory bulb of EAE-affected mice revealed that 44 genes were upregulated (and which were primarily related to inflammatory mediators), while 519 genes were downregulated; among the latter, olfactory marker protein and stomatin-like 3, which have been linked to olfactory signal transduction, were significantly downregulated (log2 [fold change] >1 and p-value < 0.05). These findings suggest that inflammation in the olfactory bulb of EAE-affected mice is associated with the downregulation of some olfactory signal transduction genes, particularly olfactory marker protein and stomatin-like 3, which may lead to olfactory dysfunction in an animal model of human multiple sclerosis.


Subject(s)
Animals , Humans , Mice , Down-Regulation , Encephalomyelitis, Autoimmune, Experimental , Gene Expression , Immunization , Inflammation , Models, Animal , Multiple Sclerosis , Myelin-Oligodendrocyte Glycoprotein , Olfactory Bulb , Olfactory Marker Protein , Signal Transduction , Spinal Cord , Transcriptome
6.
Anesthesia and Pain Medicine ; : 347-355, 2019.
Article in Korean | WPRIM | ID: wpr-762265

ABSTRACT

BACKGROUND: Although incidence of deep neck infection has decreased after the introduction of antibiotics and improvement of oral hygiene, the disease may remain serious to anesthesiologists and patients, especially relative to postoperative prognosis and airway management. The objective of this study is to clarify clinical characteristics and consider anesthetic implications. METHODS: This study reviews the experience of 116 patients that received operations for deep neck infections 1997–2017 in a university hospital. Variables included in data were age, sex, lesion, etiology, underlying disease, result of culture, anesthetic techniques, C-reactive protein level, and a variety of scores including ASA physical status, APACHE II, and SOFA. Scores were analyzed statistically to elucidate prognostic ability, and influences on intubation. RESULTS: The following background variables were associated postoperative complication; age, presence of diabetes, hypertension, and infectious disease, extended space and use of N2O. APACHE II ≥ 7 and SOFA ≥ 3 were revealed to be associated with postoperative complication. The following background variables were associated with difficult intubation: date of surgery ≤ 2009, non-otolaryngology department, and submental space. CONCLUSIONS: This study revealed the possibility that the preoperative evaluation, including the determination of scoring system, may be useful in predicting outcome and making a clinical decision of airway management in deep neck infections.


Subject(s)
Humans , Airway Management , Anti-Bacterial Agents , APACHE , C-Reactive Protein , Communicable Diseases , Hypertension , Incidence , Intubation , Neck , Oral Hygiene , Postoperative Complications , Prognosis , Retrospective Studies
7.
Anatomy & Cell Biology ; : 292-298, 2018.
Article in English | WPRIM | ID: wpr-718950

ABSTRACT

Experimental autoimmune encephalomyelitis (EAE) is a T-cell-mediated autoimmune central nervous system disease characterized by inflammation with oxidative stress. The aim of this study was to evaluate an anti-inflammatory effect of Ishige okamurae on EAE-induced paralysis in rats. An ethanolic extract of I. okamurae significantly delayed the first onset and reduced the duration and severity of hind-limb paralysis. The neuropathological and immunohistochemical findings in the spinal cord were in agreement with these clinical results. T-cell proliferation assay revealed that the ethyl-acetate fraction of I. okamurae suppressed the proliferation of myelin basic protein reactive T cells from EAE affected rats. Flow cytometric analysis showed TCRαβ+ T cells was significantly reduced in the spleen of EAE rats with I. okamurae treatment with concurrent decrease of inflammatory mediators including tumor necrosis factor-α and cyclooxygenase-2. Collectively, it is postulated that I. okamurae ameliorates EAE paralysis with suppression of T-cell proliferation as well as decrease of pro-inflammatory mediators as far as rat EAE is concerned.


Subject(s)
Animals , Rats , Central Nervous System , Cyclooxygenase 2 , Encephalomyelitis, Autoimmune, Experimental , Ethanol , Inflammation , Myelin Basic Protein , Necrosis , Oxidative Stress , Paralysis , Spinal Cord , Spleen , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL